Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Year range
1.
Braz. j. med. biol. res ; 41(9): 818-824, Sept. 2008. ilus, tab
Article in English | LILACS | ID: lil-492879

ABSTRACT

The objective of the present study was to determine to what extent, if any, swimming training applied before immobilization in a cast interferes with the rehabilitation process in rat muscles. Female Wistar rats, mean weight 260.52 ± 16.26 g, were divided into 4 groups of 6 rats each: control, 6 weeks under baseline conditions; trained, swimming training for 6 weeks; trained-immobilized, swimming training for 6 weeks and then immobilized for 1 week; trained-immobilized-rehabilitated, swimming training for 6 weeks, immobilized for 1 week and then remobilized with swimming for 2 weeks. The animals were then sacrificed and the soleus and tibialis anterior muscles were dissected, frozen in liquid nitrogen and processed histochemically (H&E and mATPase). Data were analyzed statistically by the mixed effects linear model (P < 0.05). Cytoarchitectural changes such as degenerative characteristics in the immobilized group and regenerative characteristics such as centralized nucleus, fiber size variation and cell fragmentation in the groups submitted to swimming were more significant in the soleus muscle. The diameters of the lesser soleus type 1 and type 2A fibers were significantly reduced in the trained-immobilized group compared to the trained group (P < 0.001). In the tibialis anterior, there was an increase in the number of type 2B fibers and a reduction in type 2A fibers when trained-immobilized rats were compared to trained rats (P < 0.001). In trained-immobilized-rehabilitated rats, there was a reduction in type 2B fibers and an increase in type 2A fibers compared to trained-immobilized rats (P < 0.009). We concluded that swimming training did not minimize the deleterious effects of immobilization on the muscles studied and that remobilization did not favor tissue re-adaptation.


Subject(s)
Animals , Female , Rats , Immobilization , Muscle, Skeletal/pathology , Muscular Atrophy/rehabilitation , Physical Conditioning, Animal/physiology , Swimming/physiology , Adaptation, Physiological , Muscular Atrophy/etiology , Rats, Wistar
2.
Braz. j. phys. ther. (Impr.) ; 12(3): 241-247, maio-jun. 2008. ilus, graf
Article in English, Portuguese | LILACS | ID: lil-488925

ABSTRACT

CONTEXTUALIZAÇÃO: O ultra-som terapêutico (UST) é um recurso comumente aplicado na aceleração do reparo tecidual de lesões musculares. A absorção das ondas ultra-sônicas é determinada pela freqüência e pela intensidade, sendo que, em uma mesma intensidade, a profundidade atingida por 1MHz é maior quando comparada a 3MHz. OBJETIVO: Analisar o comportamento das propriedades mecânicas de músculos submetidos à lesão aguda por impacto e tratados com UST, utilizando as freqüências de 1 e 3MHz. MATERIAIS E MÉTODOS: Foram utilizadas 40 ratas Wistar (200,1±17,8g), divididas em quatro grupos: (1) controle; (2) lesão muscular sem tratamento; (3) lesão muscular tratada com UST de freqüência 1MHz (0,5W/cm²) e (4) lesão muscular tratada com UST de freqüência 3MHz (0,5W/cm²). A lesão foi provocada no músculo gastrocnêmio por mecanismo de impacto. O tratamento foi de cinco minutos diários durante seis dias consecutivos. Os músculos foram submetidos a ensaios mecânicos de tração em uma máquina universal de ensaios. RESULTADOS: As médias e desvios-padrão das propriedades mecânicas dos grupos lesionados e tratados com UST foram significativamente maiores quando comparadas ao grupo lesionado sem tratamento (p<0,05). Em destaque, a propriedade de rigidez que, com a aplicação do UST, teve acréscimo de aproximadamente 38 por cento. CONCLUSÕES: A intervenção, por meio do UST, promoveu aumento das propriedades mecânicas nos músculos lesionados aproximando-as do grupo controle. Entretanto, não foi observada diferença significativa entre as propriedades mecânicas dos grupos tratados com ultra-som de freqüências 1MHz e 3MHz.


BACKGROUND: Therapeutic ultrasound is a resource commonly applied to speed up tissue repair in muscle injuries. The absorption of the ultrasound waves is determined by their frequency and intensity. For a given intensity, the depth reached by 1MHz is greater than the depth reached by 3MHz. OBJECTIVE: To analyze the mechanical properties of muscles subjected to acute impact injury treated with therapeutic ultrasound at the frequencies of 1 and 3MHz. METHODS: Forty female Wistar rats (200.1±17.8g) were used, divided into four groups: (1) control; (2) muscle injury without treatment; (3) muscle injury treated with therapeutic ultrasound at the frequency of 1MHz (0.5W/cm²); and (4) muscle injury treated with therapeutic ultrasound at the frequency of 3MHz (0.5W/cm²). The injury was produced in the gastrocnemius muscle by means of an impact mechanism. The treatment consisted of a single five-minute session per day, for six consecutive days. The muscles were subjected to mechanical traction tests in a universal test machine. RESULTS: Means and standard deviations for the mechanical properties of the injured groups that received therapeutic ultrasound were significantly greater than those of the injured group without treatment (p<0.05). The property of stiffness should be highlighted: the application of therapeutic ultrasound increased muscle stiffness by approximately 38 percent. CONCLUSIONS: Therapeutic ultrasound increased the mechanical properties of the injured muscles, and brought them to a level close to the control group. However, no significant difference in mechanical properties was observed between the groups treated with ultrasound at the frequencies of 1MHz and 3MHz.


Subject(s)
Rats , Animals , Physical Therapy Modalities , Musculoskeletal System/injuries , Ultrasonic Therapy
SELECTION OF CITATIONS
SEARCH DETAIL